3.14 \(\int \frac {1}{\csc ^{\frac {3}{2}}(a+b x)} \, dx\)

Optimal. Leaf size=67 \[ \frac {2 \sqrt {\sin (a+b x)} \sqrt {\csc (a+b x)} F\left (\left .\frac {1}{2} \left (a+b x-\frac {\pi }{2}\right )\right |2\right )}{3 b}-\frac {2 \cos (a+b x)}{3 b \sqrt {\csc (a+b x)}} \]

[Out]

-2/3*cos(b*x+a)/b/csc(b*x+a)^(1/2)-2/3*(sin(1/2*a+1/4*Pi+1/2*b*x)^2)^(1/2)/sin(1/2*a+1/4*Pi+1/2*b*x)*EllipticF
(cos(1/2*a+1/4*Pi+1/2*b*x),2^(1/2))*csc(b*x+a)^(1/2)*sin(b*x+a)^(1/2)/b

________________________________________________________________________________________

Rubi [A]  time = 0.03, antiderivative size = 67, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.300, Rules used = {3769, 3771, 2641} \[ \frac {2 \sqrt {\sin (a+b x)} \sqrt {\csc (a+b x)} F\left (\left .\frac {1}{2} \left (a+b x-\frac {\pi }{2}\right )\right |2\right )}{3 b}-\frac {2 \cos (a+b x)}{3 b \sqrt {\csc (a+b x)}} \]

Antiderivative was successfully verified.

[In]

Int[Csc[a + b*x]^(-3/2),x]

[Out]

(-2*Cos[a + b*x])/(3*b*Sqrt[Csc[a + b*x]]) + (2*Sqrt[Csc[a + b*x]]*EllipticF[(a - Pi/2 + b*x)/2, 2]*Sqrt[Sin[a
 + b*x]])/(3*b)

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rule 3769

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(Cos[c + d*x]*(b*Csc[c + d*x])^(n + 1))/(b*d*n), x
] + Dist[(n + 1)/(b^2*n), Int[(b*Csc[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1] && Integer
Q[2*n]

Rule 3771

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rubi steps

\begin {align*} \int \frac {1}{\csc ^{\frac {3}{2}}(a+b x)} \, dx &=-\frac {2 \cos (a+b x)}{3 b \sqrt {\csc (a+b x)}}+\frac {1}{3} \int \sqrt {\csc (a+b x)} \, dx\\ &=-\frac {2 \cos (a+b x)}{3 b \sqrt {\csc (a+b x)}}+\frac {1}{3} \left (\sqrt {\csc (a+b x)} \sqrt {\sin (a+b x)}\right ) \int \frac {1}{\sqrt {\sin (a+b x)}} \, dx\\ &=-\frac {2 \cos (a+b x)}{3 b \sqrt {\csc (a+b x)}}+\frac {2 \sqrt {\csc (a+b x)} F\left (\left .\frac {1}{2} \left (a-\frac {\pi }{2}+b x\right )\right |2\right ) \sqrt {\sin (a+b x)}}{3 b}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.05, size = 53, normalized size = 0.79 \[ -\frac {\sqrt {\csc (a+b x)} \left (\sin (2 (a+b x))+2 \sqrt {\sin (a+b x)} F\left (\left .\frac {1}{4} (-2 a-2 b x+\pi )\right |2\right )\right )}{3 b} \]

Antiderivative was successfully verified.

[In]

Integrate[Csc[a + b*x]^(-3/2),x]

[Out]

-1/3*(Sqrt[Csc[a + b*x]]*(2*EllipticF[(-2*a + Pi - 2*b*x)/4, 2]*Sqrt[Sin[a + b*x]] + Sin[2*(a + b*x)]))/b

________________________________________________________________________________________

fricas [F]  time = 0.69, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {1}{\csc \left (b x + a\right )^{\frac {3}{2}}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/csc(b*x+a)^(3/2),x, algorithm="fricas")

[Out]

integral(csc(b*x + a)^(-3/2), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{\csc \left (b x + a\right )^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/csc(b*x+a)^(3/2),x, algorithm="giac")

[Out]

integrate(csc(b*x + a)^(-3/2), x)

________________________________________________________________________________________

maple [A]  time = 2.20, size = 88, normalized size = 1.31 \[ \frac {\frac {\sqrt {\sin \left (b x +a \right )+1}\, \sqrt {-2 \sin \left (b x +a \right )+2}\, \sqrt {-\sin \left (b x +a \right )}\, \EllipticF \left (\sqrt {\sin \left (b x +a \right )+1}, \frac {\sqrt {2}}{2}\right )}{3}-\frac {2 \left (\cos ^{2}\left (b x +a \right )\right ) \sin \left (b x +a \right )}{3}}{\cos \left (b x +a \right ) \sqrt {\sin \left (b x +a \right )}\, b} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/csc(b*x+a)^(3/2),x)

[Out]

(1/3*(sin(b*x+a)+1)^(1/2)*(-2*sin(b*x+a)+2)^(1/2)*(-sin(b*x+a))^(1/2)*EllipticF((sin(b*x+a)+1)^(1/2),1/2*2^(1/
2))-2/3*cos(b*x+a)^2*sin(b*x+a))/cos(b*x+a)/sin(b*x+a)^(1/2)/b

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{\csc \left (b x + a\right )^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/csc(b*x+a)^(3/2),x, algorithm="maxima")

[Out]

integrate(csc(b*x + a)^(-3/2), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {1}{{\left (\frac {1}{\sin \left (a+b\,x\right )}\right )}^{3/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(1/sin(a + b*x))^(3/2),x)

[Out]

int(1/(1/sin(a + b*x))^(3/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{\csc ^{\frac {3}{2}}{\left (a + b x \right )}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/csc(b*x+a)**(3/2),x)

[Out]

Integral(csc(a + b*x)**(-3/2), x)

________________________________________________________________________________________